算法

1.时间复杂度

  • 时间频度

    一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n).

  • 时间复杂度

    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度.

  • 在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2).

  • 按数量级递增排列,常见的时间复杂度有:

    O(1)称为常量级,算法的时间复杂度是一个常数。

    O(n)称为线性级,时间复杂度是数据量n的线性函数。

    O(n²)称为平方级,与数据量n的二次多项式函数属于同一数量级。

    O(n³)称为立方级,是n的三次多项式函数。

    O(logn)称为对数级,是n的对数函数。

    O(nlogn)称为介于线性级和平方级之间的一种数量级

    O(2ⁿ)称为指数级,与数据量n的指数函数是一个数量级。

    O(n!)称为阶乘级,与数据量n的阶乘是一个数量级。

    它们之间的关系是: O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!),随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低.

2.空间复杂度

  • 评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。不包括算法程序代码和所处理的数据本身所占空间部分。通常用所使用额外空间的字节数表示。其算法比较简单,记为S(n)=O(f(n)),其中,n表示问题规模。

3.常用的排序算法

  • 选择排序、冒泡排序、插入排序三种排序算法可以总结为如下:

    都将数组分为已排序部分和未排序部分。

    选择排序将已排序部分定义在左端,然后选择未排序部分的最小元素和未排序部分的第一个元素交换。

    冒泡排序将已排序部分定义在右端,在遍历未排序部分的过程执行交换,将最大元素交换到最右端。

    插入排序将已排序部分定义在左端,将未排序部分元的第一个元素插入到已排序部分合适的位置。

/** 
 *	【选择排序】:最值出现在起始端
 *	
 *	第1趟:在n个数中找到最小(大)数与第一个数交换位置
 *	第2趟:在剩下n-1个数中找到最小(大)数与第二个数交换位置
 *	重复这样的操作...依次与第三个、第四个...数交换位置
 *	第n-1趟,最终可实现数据的升序(降序)排列。
 *
 */
void selectSort(int *arr, int length) {
    for (int i = 0; i < length - 1; i++) { //趟数
        for (int j = i + 1; j < length; j++) { //比较次数
            if (arr[i] > arr[j]) {
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    }
}
 
/** 
 *	【冒泡排序】:相邻元素两两比较,比较完一趟,最值出现在末尾
 *	第1趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第n个元素位置
 *	第2趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第n-1个元素位置
 *	 ……   ……
 *	第n-1趟:依次比较相邻的两个数,不断交换(小数放前,大数放后)逐个推进,最值最后出现在第2个元素位置	
 */
void bublleSort(int *arr, int length) {
    for(int i = 0; i < length - 1; i++) { //趟数
        for(int j = 0; j < length - i - 1; j++) { //比较次数
            if(arr[j] > arr[j+1]) {
                int temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        } 
    }
}
 
/**
 *	折半查找:优化查找时间(不用遍历全部数据)
 *
 *	折半查找的原理:
 *   1> 数组必须是有序的
 *   2> 必须已知min和max(知道范围)
 *   3> 动态计算mid的值,取出mid对应的值进行比较
 *   4> 如果mid对应的值大于要查找的值,那么max要变小为mid-1
 *   5> 如果mid对应的值小于要查找的值,那么min要变大为mid+1
 *
 */ 
 
// 已知一个有序数组, 和一个key, 要求从数组中找到key对应的索引位置 
int findKey(int *arr, int length, int key) {
    int min = 0, max = length - 1, mid;
    while (min <= max) {
        mid = (min + max) / 2; //计算中间值
        if (key > arr[mid]) {
            min = mid + 1;
        } else if (key < arr[mid]) {
            max = mid - 1;
        } else {
            return mid;
        }
    }
    return -1;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

4.字符串反转

void char_reverse (char *cha) {

    // 定义头部指针
    char *begin = cha;
    // 定义尾部指针
    char *end = cha + strlen(cha) -1;
    
    
    while (begin < end) {
        
        char temp = *begin;
        *(begin++) = *end;
        *(end--) = temp;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

5.链表反转(头差法)

.h声明文件

#import <Foundation/Foundation.h>

// 定义一个链表
struct Node {
    int data;
    struct Node *next;
};

@interface ReverseList : NSObject

// 链表反转
struct Node* reverseList(struct Node *head);

// 构造一个链表
struct Node* constructList(void);

// 打印链表中的数据
void printList(struct Node *head);

@end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

.m实现文件

#import "ReverseList.h"

@implementation ReverseList

struct Node* reverseList(struct Node *head)
{
    // 定义遍历指针,初始化为头结点
    struct Node *p = head;
    
    // 反转后的链表头部
    struct Node *newH = NULL;
    
    // 遍历链表
    while (p != NULL) {
        
        // 记录下一个结点
        struct Node *temp = p->next;
        // 当前结点的next指向新链表头部
        p->next = newH;
        // 更改新链表头部为当前结点
        newH = p;
        // 移动p指针
        p = temp;
    }
    
    // 返回反转后的链表头结点
    return newH;
}

struct Node* constructList(void)
{
    // 头结点定义
    struct Node *head = NULL;
    // 记录当前尾结点
    struct Node *cur = NULL;
    
    for (int i = 1; i < 5; i++) {
        struct Node *node = malloc(sizeof(struct Node));
        node->data = i;
        
        // 头结点为空,新结点即为头结点
        if (head == NULL) {
            head = node;
        }
        // 当前结点的next为新结点
        else{
            cur->next = node;
        }
        
        // 设置当前结点为新结点
        cur = node;
    }
    
    return head;
}

void printList(struct Node *head)
{
    struct Node* temp = head;
    while (temp != NULL) {
        printf("node is %d \n", temp->data);
        temp = temp->next;
    }
}

@end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

6.有序数组合并

.h声明文件

#import <Foundation/Foundation.h>

@interface MergeSortedList : NSObject
// 将有序数组a和b的值合并到一个数组result当中,且仍然保持有序
void mergeList(int a[], int aLen, int b[], int bLen, int result[]);

@end
1
2
3
4
5
6
7

.m实现文件

#import "MergeSortedList.h"

@implementation MergeSortedList

void mergeList(int a[], int aLen, int b[], int bLen, int result[])
{
    int p = 0; // 遍历数组a的指针
    int q = 0; // 遍历数组b的指针
    int i = 0; // 记录当前存储位置
    
    // 任一数组没有到达边界则进行遍历
    while (p < aLen && q < bLen) {
        // 如果a数组对应位置的值小于b数组对应位置的值
        if (a[p] <= b[q]) {
            // 存储a数组的值
            result[i] = a[p];
            // 移动a数组的遍历指针
            p++;
        }
        else{
            // 存储b数组的值
            result[i] = b[q];
            // 移动b数组的遍历指针
            q++;
        }
        // 指向合并结果的下一个存储位置
        i++;
    }
    
    // 如果a数组有剩余
    while (p < aLen) {
        // 将a数组剩余部分拼接到合并结果的后面
        result[i] = a[p++];
        i++;
    }
    
    // 如果b数组有剩余
    while (q < bLen) {
        // 将b数组剩余部分拼接到合并结果的后面
        result[i] = b[q++];
        i++;
    }
}

@end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

7.查找第一个只出现一次的字符(Hash查找)

.h声明文件

#import <Foundation/Foundation.h>

@interface HashFind : NSObject

// 查找第一个只出现一次的字符
char findFirstChar(char* cha);

@end

1
2
3
4
5
6
7
8
9

.m实现文件

#import "HashFind.h"

@implementation HashFind

char findFirstChar(char* cha)
{
    char result = '\0';
    
    // 定义一个数组 用来存储各个字母出现次数
    int array[256];
    
    // 对数组进行初始化操作
    for (int i=0; i<256; i++) {
        array[i] =0;
    }
    // 定义一个指针 指向当前字符串头部
    char* p = cha;
    // 遍历每个字符
    while (*p != '\0') {
        // 在字母对应存储位置 进行出现次数+1操作
        array[*(p++)]++;
    }
    
    // 将P指针重新指向字符串头部
    p = cha;
    // 遍历每个字母的出现次数
    while (*p != '\0') {
        // 遇到第一个出现次数为1的字符,打印结果
        if (array[*p] == 1)
        {
            result = *p;
            break;
        }
        // 反之继续向后遍历
        p++;
    }
    
    return result;
}

@end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8.查找两个子视图的共同父视图

.h声明文件

#import <Foundation/Foundation.h>
#import <UIKit/UIKit.h>
@interface CommonSuperFind : NSObject

// 查找两个视图的共同父视图
- (NSArray<UIView *> *)findCommonSuperView:(UIView *)view other:(UIView *)viewOther;

@end
1
2
3
4
5
6
7
8

.m实现文件

#import "CommonSuperFind.h"

@implementation CommonSuperFind

- (NSArray <UIView *> *)findCommonSuperView:(UIView *)viewOne other:(UIView *)viewOther
{
    NSMutableArray *result = [NSMutableArray array];
    
    // 查找第一个视图的所有父视图
    NSArray *arrayOne = [self findSuperViews:viewOne];
    // 查找第二个视图的所有父视图
    NSArray *arrayOther = [self findSuperViews:viewOther];
    
    int i = 0;
    // 越界限制条件
    while (i < MIN((int)arrayOne.count, (int)arrayOther.count)) {
        // 倒序方式获取各个视图的父视图
        UIView *superOne = [arrayOne objectAtIndex:arrayOne.count - i - 1];
        UIView *superOther = [arrayOther objectAtIndex:arrayOther.count - i - 1];
        
        // 比较如果相等 则为共同父视图
        if (superOne == superOther) {
            [result addObject:superOne];
            i++;
        }
        // 如果不相等,则结束遍历
        else{
            break;
        }
    }
    
    return result;
}

- (NSArray <UIView *> *)findSuperViews:(UIView *)view
{
    // 初始化为第一父视图
    UIView *temp = view.superview;
    // 保存结果的数组
    NSMutableArray *result = [NSMutableArray array];
    while (temp) {
        [result addObject:temp];
        // 顺着superview指针一直向上查找
        temp = temp.superview;
    }
    return result;
}

@end
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

9.无序数组中的中位数(快排思想)

.h声明文件

#import <Foundation/Foundation.h>

@interface MedianFind : NSObject

// 无序数组中位数查找
int findMedian(int a[], int aLen);

@end

1
2
3
4
5
6
7
8
9
.m实现文件
#import "MedianFind.h"

@implementation MedianFind

//求一个无序数组的中位数
int findMedian(int a[], int aLen)
{
    int low = 0;
    int high = aLen - 1;
    
    int mid = (aLen - 1) / 2;
    int div = PartSort(a, low, high);
    
    while (div != mid)
    {
        if (mid < div)
        {
            //左半区间找
            div = PartSort(a, low, div - 1);
        }
        else
        {
            //右半区间找
            div = PartSort(a, div + 1, high);
        }
    }
    //找到了
    return a[mid];
}

int PartSort(int a[], int start, int end)
{
    int low = start;
    int high = end;
    
    //选取关键字
    int key = a[end];
    
    while (low < high)
    {
        //左边找比key大的值
        while (low < high && a[low] <= key)
        {
            ++low;
        }
        
        //右边找比key小的值
        while (low < high && a[high] >= key)
        {
            --high;
        }
        
        if (low < high)
        {
            //找到之后交换左右的值
            int temp = a[low];
            a[low] = a[high];
            a[high] = temp;
        }
    }
    
    int temp = a[high];
    a[high] = a[end];
    a[end] = temp;
    
    return low;
}

@end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

10.给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。

- (void)viewDidLoad {

    [super viewDidLoad];

    NSArray *oriArray = @[@(2),@(3),@(6),@(7),@(22),@(12)];

    BOOL isHaveNums =  [self twoNumSumWithTarget:9 Array:oriArray];

    NSLog(@"%d",isHaveNums);
}


- (BOOL)twoNumSumWithTarget:(int)target Array:(NSArray<NSNumber *> *)array {
    
    NSMutableArray *finalArray = [NSMutableArray array];
    
    for (int i = 0; i < array.count; i++) {
        
        for (int j = i + 1; j < array.count; j++) {
            
            if ([array[i] intValue] + [array[j] intValue] == target) {
                
                [finalArray addObject:array[i]];
                [finalArray addObject:array[j]];
                NSLog(@"%@",finalArray);
                
                return YES;
            }
        }
    }
    return NO;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32